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Abstract

Quantum random walks are shown to have non-intuitive dynamics, which
makes them an attractive area of study for devising quantum algorithms
for well-known classical problems as well as those arising in the field of
quantum computing. In this work, we propose a novel scheme for the physical
implementation of a discrete-time quantum random walk using laser excitations
of the electronic states of an array of quantum dots. These dots represent the
discrete nodes of the walk, while transitions between the energy levels inside
each dot correspond to the required coin operation and stimulated Raman
adiabatic passage (STIRAP) processes are employed to induce the steps of the
walk. The quantum dot design is tailored in such a way as to enable selective
coupling of the energy levels. Our simulation results show a close agreement
with the ideal quantum walk distribution as well as modest robustness toward
noise disturbance.

PACS numbers: 03.67.—a, 42.50.Dv, 42.50.Ex, 03.67.Ac

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum random walks represent a generalized version of the well-known classical random
walk, which can be elegantly described using quantum information processing terminology
[1]. Despite their apparent connection however, dynamics of quantum random walks are often
non-intuitive and deviate significantly from those of their classical counterparts [2]. Among
the differences, the faster mixing and hitting times of quantum random walks are particularly
noteworthy, making them an attractive area of study for devising efficient quantum algorithms,
including those pertaining to connectivity and graph theory [2—4], as well as quantum search
algorithms [5, 6].

There are two broad classes of quantum random walks, namely the discrete- and
continuous-time quantum random walks, which have independently emerged out of the study
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of unrelated physical problems. Despite their fundamentally different quantum dynamics
however, both families of walks share similar and characteristic propagation behavior [3, 7, 8].
Strauch’s recent work [9] is the latest in a line of theoretical efforts to establishing a formal
connection between the discrete and continuous-time quantum random walks, in a manner
similar to their classical counterparts.

There have been several proposals for implementing quantum random walks using a
variety of physical systems including nuclear magnetic resonance [10, 11], cavity QED
[1, 12—14], ion traps [15], classical optics [16-22], quantum optics [23, 24], optical multiports
[25-27], optical lattice and microtraps [28—32] as well as quantum dots [33].

In this paper, we introduce another proposal for implementing the discrete-time or coined
quantum walk on a line using a series of stimulated Raman adiabatic passage (STIRAP)
operations [34-36] on a single electron trapped in an array of quantum dots. An important
advantage of our proposal is that it relies on well-established and generally accessible
experimental techniques which result in both high fidelity operations and a relative ease
of scalability. To the best of our knowledge, the proposal of Solenov and Fedichkin [33] is
the only other implementation to date which employs quantum dots, but unlike our scheme, it
pertains to a continuous-time quantum walk on a circle.

In what follows we present a brief overview of the coined quantum random walk (section 2)
and describe our proposal for the design of the quantum dot array and the sequence of required
STIRAP operations (section 3). We then present a numerical simulation of the system’s
evolution (section 4), including the effect of imperfect STIRAP operations. In the appendix,
we also demonstrate an efficient numerical technique for the optimization of STIRAP pulse
parameters.

2. Coined quantum random walk

A one-dimensional quantum random walk consists of a walker hopping between N nodes or
quantum states |i) (—N/2 —1 < i < N/2) assembled in a line. In the coined quantum walk,
each state |i) further consists of two sub-levels or coin states labeled as |1, i) and ||, i). Unlike
the classical case, the quantum walker has a complex-valued distribution ¥ over all the states,
which remains undetected throughout the walk. Each step of the walk involves a coin flip,
defined as a simultaneous unitary rotation

cos(0) sin(0) e )

sin(@) e'®>  —cos (@) el®1+¢2) )]

C@@¢g=<
on the coin states of all nodes, followed by a conditional translation which shifts the walker
in states |1, i) and ||, i) to states [1,i + 1) and ||, i — 1), respectively. Hence for a quantum
walker in an initial state ¥ (0), its state after n steps of the walk is given by ¥ (n) = U™ (0),
where

U=1"17¢ 2)

17+1

is the overall evolution operator for a single step. A final probability distribution is determined
by collapsing the walker’s wavefunction v (n) at the end of the evolution.
In this paper, we implement a modified evolution operator

u=1)c 3)
which is the same as equatlon (2) up to a translation and relabeling of states. In other words,
we can define a mapping M : U —> U where M = T_, 1 first relabels all the nodes according
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Figure 1. (@) An array of quantum dots representing the discrete nodes for a quantum walk on a
line. (b) The electronic structure of a pair of quantum dots QDyy,x and QD . For the first few
energy eigenstates, the overlap between the electron wavefunction inside the dots is negligible.
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3. Physical implementation

To implement the quantum walk we use an array of quantum dots, depicted in figure 1(a),
where all the odd barriers have been significantly lowered creating pairs of coupled dots.
Figure 1(b) illustrates a more detailed structure of the pair, labeled as the walk quantum dot
QDyyi and the auxiliary quantum dot QD,,,. The essential feature of this design is that for
low energies, the energy eigenstates of QDy,;x and QD,,, are, to a very good approximation,
spatially separable and the electron wavefunction is localized within the dot. For energies
above their joint potential barrier however the two dots share common electronic states.

The nodes of the quantum walk are mapped to the successive QDyy, along the array of
quantum dots. As depicted in figure 2, the first two energy levels of QDyy encode the coin
states || ) and |1) of the walk, the fourth energy level of QD,,, represents an auxiliary state
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Figure 2. Labeling of the energy levels as coin states ||) and |1), excited state |e) and auxiliary
state |A). STIRAP operations between states ||,) <—> |A) and | 1) <—> |A) are facilitates via the
intermediary state |e), using laser pulses with angular frequencies 2, €24 and Q4.
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Figure 3. Energy level diagram for a single node corresponding to the quantum dot dimensions
presented in figure 1: E4 =~ 173 meV, E, ~ 1045 meV and E, ~ 1912 meV. Energy levels
E4 and E| are nearly equidistant from E4 with an energy gap §E, =~ 15 meV. Similarly, the
immediate levels above and below E, and E, are separated by §E, =~ 20 meV and 6E, ~
30 meV, respectively. The absorption spectrum is assumed to have a line width w, < 1 meV. Solid
lines represent the coupling between the desired energy levels via 2|, 24 and 24 pulses. Dotted
lines demonstrate that these frequencies are prevented by the energy structure from activating
spurious coupling between any other levels.

|A), E, represents an excited state |e) well above the joint barrier between the two dots, and
other states remain unoccupied throughout the walk. The quantum walk itself is represented

4
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Figure 4. The sequence of 2-photon and 3-photon STIRAP to implement a single step of the
quantum walk. (a) The initial state of the walk with the electron confined to state | 1, 1);
(b) a 3-photon STIRAP implements the coin rotation C, mixing the states | 1,i) and | {,i);
(c) a 2-photon STIRAP transfers the population from state |1, i) to state |A, i); (d) even barriers
are lowered and odd barriers are raised in order to regroup the quantum dots. It is now possible for
another 2-photon STIRAP to transfers the population from state |A, i) to state |1, i + 1), completing

the translation operation 7, (e) potential barriers are returned to their initial setting and the above
process repeated.

by the propagation of a single-electron wavefunction through the array of dots using a series
of specially optimized 2- and 3-photon A STIRAP operations.

The 2-photon STIRAP is used to perform the translation operation f‘fr Here two laser
pulses, pump P and Stoke S, with angular frequencies €24 and €24 respectively, couple the
dressed states |1) and |A) via the intermediate state |e). By tuning the laser parameters and
applying the two pulses in the counter intuitive sequence, one can achieve coherent population
transfer between states [1) and |A) with almost perfect fidelity and without leaving any
appreciable population residual in state |e) (see figure 5).

Likewise, a pair of 3-photon STIRAP is used to perform the coin operation C. First three
laser pulses, P1 and P2 and S, with angular frequencies €2, 24 and 2,4 respectively, couple
the dressed states ||,), |1) and |A) via the intermediate state |e). A second 3-photon STIRAP is
then applied in the reverse order. This procedure is shown to be capable of performing arbitrary
rotations on the superposition state «|1) + 8] ), independently of the initial amplitudes « and
B [37] (see figure 6). Therefore, with careful optimization of laser parameters we can engineer
a variety of coin operators C.

Figure 4 illustrates how the quantum walk can be performed. First, a pair of 3-photon
STIRAP operations performs a coin rotation C' simultaneously on all coin states. A 2-photon
STIRAP will then transfer all the |1, i) states to their corresponding |A, i) state. We then
adiabatically raise all the odd barriers and lower the even barriers, virtually reversing the
paring of the quantum dots. In this new arrangement, every QD previously associated with
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Figure 5. Upper panel: the two laser pulses involved in a 2-photon STIRAP process. Both pulses
have a Gaussian envelope and are applied in the counter intuitive order, i.e. the Stokes pulse S
responsible for the |e) <— |A) transition is applied before the pump pulse responsible for the
[1) <— |e) transition. Lower panel: the time evolution of dressed states |1) (solid), |e) (dotted)
and |A) (dashed) due to the application of the 2-photon STIRAP with pulse parameters optimized
to perform a swap operation. Initially ¥4 = 1 and 4 = v, = 0.

the ith node is now paired up with (i + 1)th QDyy,. Using a second 2-photon STIRAP we
can now transfer |A, i) to |1, i + 1) which completes the implementation of T+T1 operator. The
barriers are then returned to their original setting and the process repeated for additional steps.
The final quantum walk distribution corresponds to the probability distribution for detecting
the electron inside each QDy, in the array of dots.

An important consideration in the design of the quantum dots is the ability to perform
selective addressing of states which are being coupled via STIRAP and to avoid all unwanted
secondary excitations. Taking, for example, the €24 pulse which is intended to couple the
energy levels Ey, and E,, the quantum dot energy structure should disallow a secondary
excited state, say E, = E| + Q4 to exist, as it would lead to the unwanted excitation of
the £ level. Similarly, to avoid leaking the electron out of the dot via ladder excitations,
the energy structure should prevent the coupling of E, to an upper energy level E, + Q4.
What is attractive about our proposal is that experimentally this can be achieved without
resorting to complex profiles for the quantum dot potential. In fact, using simple square wells
with dimensions given in figure 1(b) we were able to produce the necessary energy structure
depicted in figure 3. Assuming absorption line widths & < 1 meV, all superfluous excitations
will be far off resonance and will not have any appreciable magnitude.

4. Results

In order to simulate the evolution of the quantum walk in the array of dots, we first tuned our
laser parameters to correctly perform the desired C rotation and Tfl translation operations.
For our 2-photon STIRAP operations we employ pump and Stokes pulses with Gaussian
envelopes & (t) and £,(t) and parameterize them using their peak interaction energies Ep
and &,, standard deviations o, and o,, phase angles o, and o, and the time interval A7
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Figure 6. Upper panel: the six laser pulses involved in a 3-photon STIRAP process. All pulses
have a Gaussian envelope and are applied in the counter intuitive order. Lower panels: the time
evolution of dressed states |1) (solid), || ) (dashed), |e) (dot-dashed) and |A) (dotted) with pulse
parameters optimized to implement the coin operators € 4 % %) and ¢ (% %, %) respectively.
Initially Yy =1 and Y =va=1vY,= 0.

between the peak interaction energies. The STIRAP process can now be modeled by the
time-dependant hamiltonian

0 E (1) eldts 0
H(i) = | &@ e 0 Epyer |, (5)
0 Ep(t)eior 0

constructed using the rotating wave approximation [38] in the Raman resonance limit. The
pulse parameters need to be tuned such that the resulting 2-photon STIRAP operation
coherently transfers an entire population from state |}, i) to state |A, i) via state |e,i). We
achieve this by optimizing Ep and A7, using a technique detailed in the appendix, while other
parameters are fixed to any desired values. Figure 5 shows the time evolution of the dressed
states |1, 1), |A, i) and |e, i) under the application of the optimized 2-photon STIRAP, where
we have set & = 1.5 meV, 0, = 0, = 4.0 ps and @, = @, = 0, and the optimum &, = 1.50
meV and A7 = 5.87 ps. In order to achieve the second transition from |A, i) to |1,i + 1)
(after raising and lowing the alternate potential barriers), we simply reverse the order in which
the pump and Stoke pulses are applied.

In the double 3-photon STIRAP process depicted in figure 6, the pulse parameters need
to be tuned to perform a unitary operation C on the coin states. As before, we achieve this by
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Figure 7. The electron probability distribution after 100 applications of the pulse sequence (solid)
versus the corresponding discrete-time quantum random walk djstribution after 100 steps (dotted).
The 3-photon pulse parameters were optimized to perform C(%, 7, 7) and the electron was
initially confined to node 1 with probability distribution: ¥4 = ¥ = % (upper panel) and
Yy = 1 and ¢| = O (lower panel).
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Figure 8. The impact of introducing some noise in the applied pulse parameters. The panels
show deviation (solid) from the exact quantum random walk distribution (dashed) due to an
induced (a) 2% uncertainty in the laser pulse peak energies, (b) 5% uncertainty in the laser phases,
(c) 2% uncertainty in the laser pulse standard deviations, and (d) 0.3% uncertainty in the laser
pulse timing (solid).
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optimizing £, and AT after fixing the other parameters to any desired values. Setting £, =
1.0meV,0 =4.0ps, oy =ap = B, = 0,0l,iz =B =P =m 0, =P =T, 0, =
B> = 0 and oy = 0, with optimum parameters £, = 1.34 meV and A7 = 6.12 ps, we obtain
symmetric coins by simply varying f,. Figure 6 depicts the time evolution of the dressed
states || ), [1), |A) and |e) under the action of the coin operators C(%, 7 %) Aand C(%, z ”)
for B, = 5 and B, = %, respectively. We also obtain asymmetric coins like C(%,
setting a1 = 1 =, a0 = B = 5,y =0and B, = 7.

Following the control pulse optimization, we obtain the full 3 x 3 and 4 x 4 evolution
matrices corresponding to the 2- and 3-photon STIRAP operations, respectively. We then use
these to simulate the evolution of a single electron under the repeated applications of the pulse
sequence outlined in figure 4. In figure 7, we have plotted the electron wavefunction after
100 steps, using optimized pulses corresponding to the translation operator f"fl as well as two
different coin operators C ( Z,Z.Z),and C’(%, Z,Z). The results are in excellent agreement
with their respective ideal theoretical distributions. We also investigated the effect of noise
disturbance and experimental uncertainty on the resulting distribution and demonstrated a
relatively robust response against imperfect pulse parameters. Figure 8 shows a reasonable
degree of fidelity after the introduction of white noise in the energy peak, phase, timing and
the standard deviation of the laser pulses.

2
T _z
2° 72

5. Conclusion

We have proposed a physical implementation of a discrete-time quantum random walk
using the action of 2- and 3-photon STIRAP operations on an array of quantum dots.
We demonstrated that our scheme reproduces the characteristic quantum walk probability
distribution which remains observable after the introduction of modest experimental
uncertainty in the laser excitations.

Like many other proposed schemes however, our implementation of the quantum walk is
essentially a wave interference experiment and does not involve any quantum entanglements.
Such implementations come with a cost as the number of resources grows, at best linearly
with the number of nodes required for the walk. Furthermore, it is generally expected
that almost all potentially useful applications of quantum walks such as search algorithms
[5] or element distinctness [39], stem from higher dimensional walks on general graphs.
Nevertheless, implementing one-dimensional quantum walks is significant for carrying out
feasibility studies of assembling such physical systems.

Appendix A. Control pulse optimization

Considering a time-dependant Hamiltonian H (¢) for the 2-photon STIRAP, its action on a
three-level system can be determined by solving the Schrédinger equation

(@) 5 (V1O
H (92 | =ino | 4200 ). (A.1)
V(1) ¥3(0)
We do this by approximating H (¢) using a series of time-independent H; over suitably short
time steps 8¢, which allows us to write the solution as

Y (1) R ¥1(0)
Yo() | =Ur (@) | ¥200) |, (A.2)
Y3 (t) ¥3(0)
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where the evolution operator
Ur(t) = e it/ o—iH_\St/h | —iHhdt/h o—iH8t/h A3

uyp Ui i3
= | U2 U Ua|. (A4)
fi3 fi3  fiss

By carefully optimizing the pulse parameters we can achieve

dn a3\ 4 (0 1
(b%1 %)_T_Q 0, (AS)

which is the ideal swap operation between states |1) and |3) via the intermediate state |2).
When state |3) is initially empty, this amounts to a translation operation which coherently
transfers an amplitude from state |1) entirely to the empty state |3) without populating the
intermediate state |2).

We achieve the optimization by first fixing £, and phase angles 0p, 0, o) and oy, and
then varying Ep and A7 in order to minimize the cost function

_ Ay g3 0 1
=2 (fm f¢33) - (1 0)‘ (A0

= |hy |+ Az — 1] + |3 — 1] + [d33]. (A7)

The exponentials e "#%//% which have to be re-evaluated for every parameter variation,

are efficiently and accurately computed using a Chebyshev expansion [40, 41]

N
et =) an@n(A), (A8)

n=0
where A = —iI:I,(St/h,an(a) = 2J,(a) except for ag(a) = Jo(o), J,(xx) are the Bessel
functions of the first kind, ¢, are the Chebyshev polynomials, and A is the number of terms
in the Chebyshev expansion. To ensure convergence, the exponent A needs to be normalized
as

2A

Mmax — Mmin '
where min and max represent the minimum and maximum eigenvalues of A. Chebyshev
polynomials ¢, are efficiently evaluated using the recurrence relation

b (A) = 240, 1 (A) + ¢ (A), (A.10)

A= (A.9)

and
do(A) =1, ¢1(A) = A (A.11)

In practice, iterations are continued until the norm of the matrix exponential converges to the
required level of accuracy.
The 3-photon STIRAP process is similarly represented by

(o) )
o | . [0
wi | YO o | (A.12)
(D) 4(0)
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Figure 9. The optimization surface of the Cfoperator obtained by minimizing the cost function
kc (equation (A.15)). Referring to figure 6, £y is the P1 pulse energy peak and A7 is the time
between the S and P1 pulse energy peaks.

where the evolution operator

Ay A iz dig

~ fioy fop fioz o

Ucy= |32 02 2 | (A.13)
i3 3 Gz 3
flgr fap Oaz Oas

This time pulse parameters can be optimized in order to achieve
iy U R
(A” A”) ~C, (A.14)

where C is a desired unitary coin matrix given by equation (1).
As before, this is achieved by fixing all the parameters except for £, and A7 which are
varied to minimize the cost function

=Y (f’“ f‘“) (”:‘“ ‘:‘21)*—(0 1)‘ (A.15)
U1 ) \lin dx 1o

Figure 9 shows the minimization surface profile for the parameters given in section 4. It is

important to note that the above cost function leads to a ‘loose’ optimization in the sense

that it does not strictly optimize the STIRAP into any specific coin operator. Rather, it only

requires that the coin matrix be unitary. It also turns out that the optimum parameters for a

unitary C are independent of the choice of phase factors  and B. Instead these phases can

be conveniently altered to manipulate the exact form of the operator C while maintaining its
unitarity.
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